Paul had a birthday yesterday, and they were playing a guessing game there with Andrew: Andrew was trying to guess Paul's age. Andrew knew that Paul's age is an integer between 1 and n, inclusive. Andrew can guess any number x between 1 and n, and Paul will tell him what is the greatest common divisor of x and his age.

Here's a possible course of the game for $n=6$. Andrew starts with guessing 3, and Paul replies that the greatest common divisor of 3 and his age is 1 . That means that Paul's age can't be 3 or 6 , but can still be $1,2,4$ or 5 . Andrew continues with guessing 2, and Paul replies 2. That means that Paul's age can't be 1 or 5, and the only two remaining choices are 2 and 4. Finally, Andrew guesses 4, and Paul replies 2. That means that Paul's age is 2 , and the game is over.

Andrew needed three guesses in the above example, but it's possible to always determine Paul's age in at most two guesses for $n=6$. The optimal strategy for Andrew is: at the first step, guess 6 . If Paul says 1 , then its 1 or 5 and he can check which one by guessing 5 . If Paul says 2, then its 2 or 4, and he can check by guesing 4 as we've seen above. If Paul says 3 , then we already know the answer is 3 . Finally, if Paul says 6 , the answer is 6 .

What is the number of guesses required in the worst case if Andrew guesses optimally for the given n ?

Input

The input will contain several test cases, each of them as described below.

The input file contains one integer $n, 2 \leq n \leq 10000$.

Output

For each test case, write to the output on a line by itself.
Output one integer - the number of guesses Andrew will need to make in the worst case.

Sample Input

6

Sample Output

2

