1550 Coin Exchange Let a_1, a_2, \ldots, a_n be n relatively prime positive integers. A positive integer k has a representation by a_1, a_2, \ldots, a_n if there exist non-negative integers x_1, x_2, \ldots, x_n such that $k = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$. The linear Diophantine problem of Frobenius is to determine the largest integer $g(a_1, a_2, \ldots, a_n)$ with no such representation. The linear Diophantine problem of Frobenius has very practical application. It is equivalent to the problem of coin exchange. Given sufficient supply of coins of denominations a_1, a_2, \ldots, a_n , determine the largest amount which cannot be formed by means of these coins. Mathematical problems, such as this, are usually difficult to solve. We shall consider a simple case in which n = 2. In addition to $g(a_1, a_2)$, we shall also want to find $n(a_1, a_2)$ the number of positive integers that cannot be represented by a_1 and a_2 . Write a program to compute $g(a_1, a_2)$ and $n(a_1, a_2)$. The following theorem may help you in designing your program. **Theorem:** A positive number $k = qa_1 + r$, $0 < r < a_1$, can be represented by a_1, a_2, \ldots, a_n if and only if $k \ge t_r$, where t_r is the smallest positive integer which has the same residue r modulo a_1 and can be represented by a_2, a_3, \ldots, a_n . #### Input The input file will consist of one or more cases. Each case contains two positive integers a_1 and a_2 in a line. The product of a_1 and a_2 is less than 2^{32} . A line containing two zeros follows the last case, and terminates the input file. ## Output For each case a_1 and a_2 in the input file, the output file should contain a line with two numbers $g(a_1, a_2)$ and $n(a_1, a_2)$ separated by a blank. #### Sample Input ### Sample Output 7 4 417 209