Suppose that P_{1} is an infinite-height prism whose axis is parallel to the z-axis, and P_{2} is also an infinite-㲘 section of P_{1} and the $x y$-plane, and P_{2} is also defined by the polygon C_{2} which is the cross section of P_{2} and the $x z$-plane.
Figure I. 1 shows two cross sections which appear as the first dataset in the sample input, and Figure shows the relationship between the wrisms and their cross sections.

C_{1} : Cross section of P_{1} and the $x y$-plane C_{2} : Cross section of P_{2} and the $x z$-plane
Figure I.1: Cross sections of Prisms

Figure I.2: Prisms and their cross sections

Figure I.3: Intersection of two prisms
Figure I. 3 shows the intersection of two prisms in Figure I.2, namely, P_{1} and P_{2} Write a program which calculates the volume of the intersection of two prisms.

The input is a sequence of datasets. The number of datasets is less than 200 . Each dataset is formatted as follows.
$x_{12} y_{1}$
$x_{1 m} y_{1 m}$
${ }_{21} z_{21}$
$x_{22} z_{22}$
$2_{2 n} z_{2 n}$
m and n are integers ($3 \leq m \leq 100,3 \leq n \leq 100$) which represent the numbers of the vertices of the polygons, C_{1} and C_{2}, respectively.
$x_{1 i}, y_{1 i}, x_{2 j}$ and $z_{2 j}$ are integers between -100 and 100 , inclusive. $\left(x_{1 i}, y_{1 i}\right)$ and $(x 2 j, z 2 j)$ mean the i-hh and j-th vertices' positions of C_{1} and C_{2} respectively.
The sequences of these vertex positions are given in the counterclockwise order either on the $x y$-plane the $x z$-plane as in Figure I.1.
You may assume that all the polygons are convex, that is, all the interior angles of the polygons are
ess than 180 degrees. You may also assume that all the polygons are simple, that is, each polygon's Yess than 180 degrees. You may also assume that all the polygons are simple, that is, each polygon's andary does not cross nor touch itself.
The end of the input is indicated by a line containing two zeros.

Output

For each dataset, output the volume of the intersection of the two prisms, P_{1} and P_{2}, with a decimal esentation in a line any other extra characters.

Sample Input
 43 72
 $\begin{array}{ll}4 & 2 \\ 3 & 3 \\ 0 & 2\end{array}$ $\begin{array}{lll}7 & 2 \\ 0 & 2 \\ 3 & 1 \\ 4 & 2\end{array}$ $\begin{array}{lll}0 & 2 \\ 4 & 2 \\ 0 & 1 \\ 8 & 1\end{array}$
 81 44 302
 $\begin{array}{ll}40 \\ 30 & 12 \\ 2 & 12 \\ 2 & 2\end{array}$
 312 21 2
 152 308 13 14 28 8
 28 85 135 21 21 18 $\begin{array}{ll}18 \\ 18 \\ 11 \\ 6 & 19 \\ 6 & 18\end{array}$ 610 68 85 85 1012 59 156 2010 1812 $\begin{array}{ll}18 & 12 \\ 3 & 3 \\ 5 & 5\end{array}$ 103 1010 10 20 208 1015 1015 108 44 -9899 -98 99 $-99-99$ $99-98$ 99 97 9997 -9999 $-98-98$ $-98-98$ $99-99$ 9699

Sample Output
4.708333333333333 1680.0000000000005 491. 7600258.4847715655

