You are given an undirected graph with N vertexes and M edges. Every vertex in this graph has an integer value assigned to it at the beginning. You're also given a sequence of operations and you need to process them as requested. Here's a list of the possible operations that you might encounter:

1. Deletes an edge from the graph.

The format is $[\mathrm{D} X]$, where X is an integer from 1 to M, indicating the ID of the edge that you should delete. It is guaranteed that no edge will be deleted more than once.
2. Queries the weight of the vertex with K-th maximum value among all vertexes currently connected with vertex X (including X itself).
The format is [$\mathrm{Q} X K$, where X is an integer from 1 to N, indicating the id of the vertex, and you may assume that K will always fit into a 32 -bit signed integer. In case K is illegal, the value for that query will be considered as undefined, and you should return 0 as the answer to that query.
3. Changes the weight of a vertex.

The format is [c $X V$], where X is an integer from 1 to N, and V is an integer within the range $\left[-10^{6}, 10^{6}\right]$.

The operations end with one single character, ' E ', which indicates that the current case has ended. For simplicity, you only need to output one real number - the average answer of all queries.

Input

There are multiple test cases in the input file. Each case starts with two integers N and $M(1 \leq N \leq$ $2 * 10^{4}, 0 \leq M \leq 6 * 10^{4}$), the number of vertexes in the graph. The next N lines describes the initial weight of each vertex $\left(-10^{6} \leq\right.$ weight $\left.[i] \leq 10^{6}\right)$. The next part of each test case describes the edges in the graph at the beginning. Vertexes are numbered from 1 to N. The last part of each test case describes the operations to be performed on the graph. It is guaranteed that the number of query operations $\left[\mathrm{Q} X \mathrm{~K}\right.$] in each case will be in the range $\left[1,2 * 10^{5}\right.$], and there will be no more than $2 * 10^{5}$ operations that change the values of the vertexes [C $X \quad V$].

There will be a blank line between two successive cases. A case with $N=0, M=0$ indicates the end of the input file and this case should not be processed by your program.

Output

For each test case, output one real number - the average answer of all queries, in the format as indicated in the sample output. Please note that the result is rounded to six decimal places.

Explanation for samples:

For the first sample:
D 3 - deletes the 3rd edge in the graph (the remaining edges are $(1,2)$ and $(2,3)$)
Q 12 - finds the vertex with the second largest value among all vertexes connected with 1 . The answer is 20 .

Q 21 - finds the vertex with the largest value among all vertexes connected with 2 . The answer is 30.

D 2 - deletes the 2nd edge in the graph (the only edge left after this operation is $(1,2)$)
Q 32 - finds the vertex with the second largest value among all vertexes connected with 3 . The answer is 0 (Undefined).

C 150 - changes the value of vertex 1 to 50
Q 11 - finds the vertex with the largest value among all vertex connected with 1 . The answer is 50 . E - This is the end of the current test case. Four queries have been evaluated, and the answer to this case is $(20+30+0+50) / 4=25.000$.

For the second sample, caution about the vertex with same weight:
Q 11 - the answer is 20
Q 12 - the answer is 20
Q 13 - the answer is 10

Sample Input

Sample Output

