City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, the mayor plans to build a RTQS (Real Time Query System) to monitor all traffic situations. City C is made up of N crossings and M roads, and each road connects two crossings. All roads are bidirectional. One of the important tasks of RTQS is to answer some queries about route-choice problem. Specifically, the task is to find the crossings which a driver MUST pass when he is driving from one given road to another given road.

Input

There are multiple test cases.
For each test case:
The first line contains two integers N and M, representing the number of the crossings and roads.
The next M lines describe the roads. In those M lines, the i-th line (i starts from 1)contains two integers X_{i} and Y_{i}, representing that road_{i} connects crossing X_{i} and $Y_{i}\left(X_{i} \neq Y_{i}\right)$.

The following line contains a single integer Q, representing the number of RTQs.
Then Q lines follows, each describing a RTQ by two integers S and $T(S \neq T)$ meaning that a driver is now driving on the road_{s} and he wants to reach road_{t}. It will be always at least one way from road_{s} to road_{t}.

The input ends with a line of ' 00 '.
Please note that: $0<N \leq 10000,0<M \leq 100000,0<Q \leq 10000,0<X_{i}, Y_{i} \leq N, 0<S, T \leq M$

Output

For each RTQ prints a line containing a single integer representing the number of crossings which the driver MUST pass.

Sample Input

56
12
13
23
34
45
35

Sample Output

0

