Integers $1,2,3, \ldots, n$ are placed on a circle in the increasing order as in the following figure. We want to construct a sequence from these numbers on a circle. Starting with the number 1 , we continually go round by picking out each k-th number and send to a sequence queue until all numbers on the circle are exhausted. This linearly arranged numbers in the queue are called $\operatorname{Jump}(n, k)$ sequence where $1 \leq n, k$.

Let us compute $\operatorname{Jump}(10,2)$ sequence.
The first 5 picked numbers are $2,4,6,8,10$ as shown in the following figure. And 3, 7, 1, 9 and 5 will follow. So we get $\operatorname{Jump}(10,2)=$ [2,4,6,8,10,3,7,1,9,5]. In a similar way, we can get easily $\operatorname{Jump}(13,3)=[3,6,9,12,2,7,11,4,10,5,1,8,13], \operatorname{Jump}(13,10)=$ $[10,7,5,4,6,9,13,8,3,12,1,11,2]$ and $\operatorname{Jump}(10,19)=[9,10,3,8,1,6,4,5,7,2]$.

You write a program to print out the last three numbers of $\operatorname{Jump}(n, k)$ for n, k given. For example suppose that $n=10, k=2$, then you should print 1,9 and 5 on the output file. Note that $\operatorname{Jump}(1, k)=$ [1].

Input

Your program is to read the input from standard input. The input consists of T test cases. The number of test cases T is given in the first line of the input. Each test case starts with a line containing two integers n and k, where $5 \leq n \leq 500,000$ and $2 \leq k \leq 500,000$.

Output

Your program is to write to standard output. Print the last three numbers of $\operatorname{Jump}(n, k)$ in the order of the last third, second and the last first.

Sample Input

3
102
1310
3000054321

Sample Output

195
1112
107751763823432

