

A switch is either in "through" or "branching" state. When the tramcar comes from B / M-end
 through. When the tramcar comes from S -end
stata. The state
Kids are not change in this a case.
Rail unis are given rail units of various types that fill a rectangle area of $w \times h$, as shown in Figure $10($ a) . Reil units meeting at an edge of adiacent two framese are automatically connected. Each rail unit may
be independently rotated around the center of its frame by multiples of 90 degrees in order to chang
he connection of rail units, but its position cannot be chanced he connection of rail units, but its position cannot be changed.
Kids should make "valid" layouts by rotating each rail unit, such as getting Figure $10(\mathrm{~b})$ fron Figure $10($ and. A layout is valid when all raids at three e end of of every switch are directly or indirirectly $10($ a). Invalid layouts are frowned upon. When a tramcar runs in a valid layout, it will eventually begin to repeat the same route forever. a triple of
switches.
A periodical route is a sequence of rail units on which the tramcar starts from a rail unit with a Anng condition and returns to the same rail unit with the same rats
periodical route through a switch or the the frist time
switches is called the "fun route" since kids like the rattling periocical route through a switch or switches is called the "fuy route", since kids like the rattling
sound the tramarar makes when it passes trrough a switch. The tramara takes the same unit time to so through a rail unit, not depending on the types of the unit or the tramcar directions. After the
ramcar starts on a rail unit on a "fun route", it will come back to the same unit with the same running rancar starts on a rail unit on a "tun route", it will come back to the same unit with the same runnin
ondition, sooner or later. The fun time T of a fun route is the number of time units that the tramcar
takes for going around the route. takes for going around the route
Of course, kids hetter enioy
akes or going around the route.
Of course, ,ids better enjoy layouts with longer fun time. Given a variety of rail units placed on a
lectangurar are, your job is or ootate the given rail units appropriately and tof find the fun route with
the longest fun time in the valid layouts.

Figure 10: Rail units in 5×2 matrix form
For example, there is a fun route in Figure $10(\mathrm{~b})$. Its fun time is 24 . Let the toy tramcar start
om B / M-end at $(1,2)$ toward $(1,3)$ and the states of all the switches are the through-states. It toes
 ates of the switches. Then the tramcar ges through $(1,3),(1,4),(2,4),(2,5),(1,5),(1,4),(1,3)$,
$1,2),(2,2),(2,1),(1,1)$ and $(1,2)$. Here, the tramcar goes through $(1,2)$ again, but with the same 24 units one atter its start, and the rail units the tramcar visted, the tramcar should hay
 whit the fun time as cerived from tian in 1gare 1 (a) is shown in Figure 1 .

 $=20$. The layout in Figure $12(a)$ is idiferent from that in Figure $12($ b) at the eight rail units rotated no fun
12) is 20

Figure 12: Fun routes in valid layout:

Note that there may be simple cyclic routes that do not go
trough any switches in a valid layout, which are not counted Hrough any switches in a valid layout, which are not counted
as the fun routes. In Figure 13, there are two fu routes
 espectivel. The requat is greater than fun times of the fun Input
The input consists of multiple datasets, followed by a line
containing two zeros separated by a space. Each dataset has containing two zeros
the following format
wh

 Output
For each dataset, an integer should be printed that indicates the longest fun time of all the fun routes
in all the valid layouts with the given rail units. When there is no valid layout according to the given
rail units, a zero should be printed.

Sample Input

