Origami is the traditional Japanese art of paper folding. One day, Professor Egami found the message on the origami paper. Your mission is to simulate paper folding and pin punching on the folded sheet, and calculate the number of pinholes on the original sheet when unfolded.
A sequence of folding instructions for a a position are specified. As a folding instruction, two points P and Q are given. The paper should be folded so that P touches Q from above (Figare 4). To make a fold, we first divide the shee
into two segments by creasing the sheet along into two segments by creasing the sheet along
the folding line, i.e., the perpendicular bisector of the line segment $P Q$, and then turn over the

Figure 4: Simple case of paper folding egment containing P onto the other. You can gnore the thickness of the paper.
The original at square piece of paper is folded into a structure consisting of layered paper segments,
which are connected by linear hinges. For each instruction, we fold one or more paper segments along which are connected dy linear hinges. For each instruction, we fold one or more paper segments along
the specified folding line, dividing the original segments into new smaller ones. The folding operation the specified folding line, dividing the original segments into new smaller ones. The folding operation
turns over some of the paper segments (not only the new smaller segments but also some other segments that have no intersection with the folding line) to the reective position against the folding line. That is, for a paper segment that intersects with the folding line, one of the two new segments made by dividing
the original is turned over; for a paper segment that does not intersect with the folding line, the whole the original is turned over; for
segment is simply turned over
egment is simply turned over.
The folding operation is carried out repeatedly applying the following rules, until we have no segment to turn over.

- Rule 1: The uppermost segment that contains P must be turned over
- Rule 2: If a hinge of a segment is moved to the other side of the folding line by the operation, any segment that shares the same hinge must be turned over.
- Rule 3: If two paper segments overlap and the lower segment is turned over, the upper segment must be turned over too.

> Figure 5: Different cases of folding

In the examples shown in Figure 5, (a) and (c) show cases where only Rule 1 is applied. (b)
hows a case where Rule 1 and 2 are applied to turn over two paper segments connected by a
hinge, and (d) shows a case where Rule 1,3 and hinge, and (d) shows a case where Rule 1,3 and
2 are applied to turn over three paper segments. After processing all the folding instructions, of paper at that position. In the case of Figur there are three pinholes on the unfolded shee of paper.

Input
The input is a sequence of datasets. The end of the input is indicated by a line containing a zero
Each dataset is formatted as follows. For all datasets, the size of the initial sheet is 100 mm square, and, using mm as the coordinate unit,
the corners of the sheet are located at the coordinates $(0,0),(100,0),(100,100)$ and $(0,100)$. The
integer k is the number of folding instructions and $1 \leq k<10$. Each of the following k lines represents integer k is the number of folding instructions and $1 \leq k \leq 10$. Each of the following k lines represents
insinge
a single folding instruction and consists of four integers p^{i}, p_{i}^{i}
q^{i} a single folding instruction and consists of four integers $p_{x}^{2}, p_{y}^{2}, q_{x}^{i}$ and q_{y}^{2}, delimited by a space. The
positions of point P and Q for the i-th instruction are given by $\left(p_{x}^{i}, p_{y}^{i}\right)$ and $\left(q_{x}^{i}, q_{y}^{i}\right)$, respectively. You positions of point P and Q for the i-th instruction are given by $\left(p_{x}^{i}, p_{y}^{i}\right)$ and $\left(q_{x}^{i}, q_{y}^{i}\right)$, respectively. You
can assume that $P \neq Q$. You must carry out these instructions in the given order. The last line of a can assume that $P \neq Q$. You must carry out these instructions in the given order. The last line of a
dataset contains two integers h_{x} and h_{y} delimited by a space, and $\left(h_{x}, h_{y}\right)$ represents the position of the pinhole.

- The points P and Q of the folding instructions are placed on some paper segments at the folding
time, and P is at least 0.01 mm distant from any borders of the paper segments.
- The position of the pinhole also is at least 0.01 mm distant from any borders of the paper segments at the punching time.
- Every folding line, when infinitely extended to both directions, is at least 0.01 mm distant from any corners of the paper segments before the folding along that folding line.
- When two paper segments have any overlap, the overlapping area cannot be placed between any two parallel lines with 0.01 mm distance. When two paper segments do not overlap, any points one segment are at least 0.01 mm distant from any points on the other segment.
For example, Figure 5 (a), (b), (c) and (d) correspond to the first four datasets of the sample input.

Output

each dataset, output a single line containing the number of the pinholes on the sheet of paper, when unfolded. No extra characters should appear in the output.

Sample Input

