A square root of a number x is a number r such that $r^{2}=x$. A discrete square root of a non-negative integer x is a non-negative integer r such that $r^{2} \equiv x \bmod N, 0 \leq r<N$, where N is a specific positive integer and mod is the modulo operation.

It is well-known that any positive real number has exactly two square roots, but a non-negative integer may have more than two discrete square roots. For example, for $N=12,1$ has four discrete square roots $1,5,7$ and 11 .

Your task is to find all discrete square roots of a given non-negative integer x. To make it easier, a known square root r of x is also given to you.

Input

The input consists of multiple test cases. Each test case contains exactly one line, which gives three integers x, N and $r .(1 \leq x<N, 2 \leq N<1,000,000,000,1 \leq r<N)$.

It is guaranteed that r is a discrete square root of x modulo N. The last test case is followed by a line containing three zeros.

Output

For each test case, print a line containing the test case number (beginning with 1) followed by a list of corresponding discrete square roots, in which all numbers are sorted increasingly.

Sample Input

1121
4152
000

Sample Output

Case 1: 15711
Case 2: 27813

