The number of divisor function or $d(n)$ is a very interesting function in number theory. It denotes the number of positive divisors of a particular number. For example $d(24)=8$ as 24 has eight divisors $1,2,3,4,6,8,12$ and 24 . In mathematics factorial of a positive integer number n is written as n ! and is defined as below:

$$
n!=1 \times 2 \times 3 \times \cdots \times n=\prod_{i=1}^{n} i
$$

Another interesting function $A F(n)$ (Again factorial in short) is defined as:

$$
A F(n)=1!\times 2!\times 3!\times \ldots \times n!=\prod_{i=1}^{n} i!
$$

Given n, your job is to find the value of $d(A F(n))$.

Input

The input file contains at most 101 lines of inputs. Each line contains an integer $n(0<n<5000001)$. Input is terminated by a line containing a single zero. This value should not be processed.

Output

For each line of input produce one line of output.
This line contains the modulo $100000007\left(10^{8}+7\right)$ of $d(A F(n))$.

Sample Input

1
2
3
4
100
0

Sample Output

1
2
6
18
59417661

