A spiral on a grid of size $(2n+1) \times (2n+1)$ has been constructed as follows. Number 1 is in the center square at (0,0), number 2 is to the right of it at (1,0), and then we continue place the positive integers in order along the spiral in counterclockwise fashion. Now, given 2 coordinates indicating 2 corners of a rectangle, find the sum of all numbers in the enclosing rectangle.

See the figure on the right for example.

Input

A number of of inputs (≤ 100), each starting with line contains two integers n ($1 \leq n \leq 10^9$) and q ($1 \leq q \leq 100$): the size of the grid and the number of queries.

After this, there are lines, each containing four integers (x_1, y_1) and (x_2, y_2) in that order, where $-n \le 1$

 $x_1, y_1, x_2, y_2 \leq n$. This is the 2 corners of the rectangle, in cartesian 2D coordinates.

17 + 16 + 15 + 14

0

18

19

20

0

See the diagram, 1 is at the center at (0,0).

Output

For each input, output the answer modulo 1000000007.

Sample Input

2 3

0 -2 1 1

-1 0 1 0

1 2 1 2

Sample Output

74

9

14