A spiral on a grid of size $(2 n+1) \times(2 n+1)$ has been constructed as follows. Number 1 is in the center square at $(0,0)$, number 2 is to the right of it at $(1,0)$, and then we continue place the positive integers in order along the spiral in counterclockwise fashion. Now, given 2 coordinates indicating 2 corners of a rectangle, find the sum of all numbers in the enclosing rectangle.

See the figure on the right for example.

Input

A number of of inputs (≤ 100), each starting with line contains two integers $n\left(1 \leq n \leq 10^{9}\right)$ and $q(1 \leq q \leq$ 100): the size of the grid and the number of queries.

After this, there are lines, each containing four integers $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in that order, where $-n \leq$ $x_{1}, y_{1}, x_{2}, y_{2} \leq n$. This is the 2 corners of the rectangle, in cartesian 2D coordinates.

See the diagram, 1 is at the center at $(0,0)$.

Output

For each input, output the answer modulo 1000000007.

Sample Input

23
0-2 11
-1 010
1212

Sample Output

