A graph G has n nodes, $v_{1}, v_{2}, \ldots, v_{n}$ such that v_{i} is connected to v_{i+1} for $0 \leq i \leq n-2$. The last node, v_{n} is connected to all nodes v_{j} for $0 \leq j \leq n-1$. Each edge of the graph has a single resistor with resistance of 1 ohm . Given 2 nodes, v_{i} and v_{j}, find the equivalent resistance between these 2 nodes.

Note that when we add a power source to the 2 nodes with I amperes, then each node on the graph has some fixed voltage, and each edge has some fixed current, such that the inward current equals the outward current on each node that is not v_{i} (has net input current I) and not v_{j} (has net output current $J)$. Moreover, Ohm's law is followed, which says that $R=V / I$, where I is the current in amperes, V the voltage in volts and R the resistance in ohms.

This is all the information needed to solve the problem.

Input

A number of of inputs (≤ 10000), each starting with n, i, j on a line $(1 \leq i<j \leq n \leq 10000)$.

Output

For each input, output the equivalent resistance between v_{i} and v_{j}, rounded to 6 digits after the decimal.

Sample Input

312
313

Sample Output

0.298142
0.447214

