Compute the number of paths in 3 D cartesian space from $(0,0,0)$ to (n, m, k), where n, m, k are positive integers, such that each step consist of going from (x, y, z) to one of
$\{(x+1, y+1, z+1),(x, y+1, z+1),(x+1, y, z+1),(x+1, y+1, z),(x+1, y, z),(x, y+1, z),(x, y, z+1)\}$
Additionally, in at least one of the steps in each path, we end up going from (x, y, z) to one of $\{(x+1, y+1, z+1),(x, y+1, z+1),(x+1, y, z+1),(x+1, y+1, z)\}$.

Input

A number of of inputs (≤ 200), with n, m, k on each line separated by a single space, such that $0<n, m, k \leq 1000$.

Output

For each input, output the number of paths modulo 1000000007.

Sample Input

111
123

Sample Output

7
179

