Let $M_{N}=\left(m_{i j}\right)$ be an $N \times N$ matrix, with integer constants Q, K, A, B satisfying:

$$
m_{i j}=A \cos ((i+Q j) x)+B \sin ((i+Q j) x), \text { where } 0 \leq i, j<N, \text { with } x=K \frac{\pi}{N} .
$$

Given an integer interval $[L, R]$, compute

$$
\sum_{N=L}^{R} \operatorname{det}\left(I+M_{N}\right)
$$

where I is the identity matrix, and det is the determinant of a square matrix.

Input

A number of of inputs (≤ 1000), each line with integers Q, K, A, B, L, R. They satisfy, $0<$ $K, A, B, L, R \leq 10^{9}, 0<L \leq R \leq 10^{9},|Q| \leq 1$. Additionally, if $Q=0$ and K is odd, then $R-L \leq 300$.

Output

For each input, output the answer on one line, rounded to 6 digits after the decimal.

Sample Input

$\begin{array}{llllll}-1 & 12 & 10 & 8 & 10\end{array}$
11379310
011107310

Sample Output

13607.000000
-12342.000000
57.083113

