Hedgehogs communicate via complex calls. Hedgehogs with better calls can communicate a longer distance. Consider *n* Hedgehogs (working together) on the X-axis, with coordinates X_i for $1 \le i \le n$, and communication ability A_i , then 2 hedgehogs can communicate if and only if $|X_i + X_j| \le A_i + A_j$.

Exactly k hedgehogs are not underground looking for food, and can currently communicate and lookout for attacking Eagles. The remaining n - k hedgehogs are foraging for food. The units of food each hedgehog can forage underground each day is given by S_i . Each Hedgehog that is communicating can increase their communication ability A_i by D from consuming D unit of food.

Compute the minimal food cost on any given day for all pairs of hedgehogs to be able to communicate directly. If there is food surplus, just print a negative integer indicating negative food cost.

Input

A number of of inputs (≤ 50), each starting with two integers n and k are given ($1 \leq k \leq n \leq 100000$). On each of the following n lines are X_i , A_i , S_i ($1 \leq X_i$, A_i , $S_i \leq 100000000$).

Output

For each input, output the minimal food cost (or maximal gain).

In case of a gain, the printed number should be negative.

Sample Input

Sample Output

412