Hedgehogs communicate via complex calls. Hedgehogs with better calls can communicate a longer distance. Consider n Hedgehogs (working together) on the X-axis, with coordinates X_{i} for $1 \leq i \leq n$, and communication ability A_{i}, then 2 hedgehogs can communicate if and only if $\left|X_{i}+X_{j}\right| \leq A_{i}+A_{j}$.

Exactly k hedgehogs are not underground looking for food, and can currently communicate and lookout for attacking Eagles. The remaining $n-k$ hedgehogs are foraging for food. The units of food each hedgehog can forage underground each day is given by S_{i}. Each Hedgehog that is communicating can increase their communication ability A_{i} by D from consuming D unit of food.

Compute the minimal food cost on any given day for all pairs of hedgehogs to be able to communicate directly. If there is food surplus, just print a negative integer indicating negative food cost.

Input

A number of of inputs (≤ 50), each starting with two integers n and k are given ($1 \leq k \leq n \leq 100000$). On each of the following n lines are $X_{i}, A_{i}, S_{i}\left(1 \leq X_{i}, A_{i}, S_{i} \leq 1000000000\right)$.

Output

For each input, output the minimal food cost (or maximal gain).
In case of a gain, the printed number should be negative.

Sample Input

53
4163233
1312243
8713293
121162153
15935221
Sample Output
412

