Rats are loose upon the world, each at a 2D coordinate. Bob is going to release a number of devices to catch the rates. If the device falls on the rat, the rat is caught. All rats on the segment between any 2 given devices is also considered caught. Finally, all rats that fall within the triangle formed by any 3 devices is considered caught. Calculate the minimum number of devices needed to catch all rats.

Input

A number of of inputs (≤ 100) described as follows. The first two integers n and $m(0<n, m \leq 300)$.
The next n lines are two integers x, y, representing the coordinates of a rat. The next m lines is two integers x, y, that can be a coordinate of the device. All coordinates fit into 32 bit unsigned integers.

Output

For each input, output the minimum number of devices needed on a single line. If it is not possible to cat all rats, output ' -1 ' on a single line.

Sample Input

$$
44
$$

$$
00
$$

$$
10
$$

$$
01
$$

$$
\begin{array}{ll}
-1 & 0
\end{array}
$$

01
10
0-1
-10

Sample Output

