Given a set of points in the plane, find the convex pentagon with largest perimeter such that each vertex of the pentagon is a unique point in the point set! Note that convex means no line segment between two points on the boundary of the pentagon ever goes outside the pentagon.

Input

A number of test cases (≤ 100), one per line, each with $N(1 \leq N \leq 8500)$, followed by N points with (x, y) integer.

Each integer fit in 32 bits signed. Note there are no duplicate points.

Output

Output the perimeter rounded to 2 decimal places on one line for each test case. If no such pentagon exists, print ' -1 '.

Sample Input

```
1
0
6
0
0
12
13
2 0
2 2
```


Sample Output

-1
8.83

