Consider N disks in the plane: $C_{1}, C_{2}, \ldots, C_{N}$ such that, for all i, where $0<i<N$, we have the center of C_{i} on the circumference of C_{i+1}, and the center of C_{n} on the circumference of C_{1}. What is the maximum number of pairs of disks $\left(C_{i}, C_{j}\right)$, with $1 \leq i, j \leq N$ such that C_{i} properly contains C_{j}. Note, the set T properly contains, the set S, if and only if $S \subseteq T$ and $S \neq T$.

Input

A number of inputs (<1000) with integer $N(1 \leq N \leq 1000000)$.

Output

Output one line per input, the answer.

Sample Input

1
2
3

Sample Output

0

