As it is known, Tobby loves arrays and queries (he also hates long statements :D). One day Tobby came up with the following: there is an array of integers and multiple queries. For each query, Tobby wants to know the value of the k-th position in the subarray $[l, r](r \geq l)(1 \leq k \leq r-l+1)$, if the subarray $[l, r]$ was sorted in non-decreasing order.

Input

The input has several test cases. The first line contains $n\left(1 \leq n \leq 10^{6}\right)$ and $q\left(1 \leq q \leq 10^{6}\right)$, the length of the array and the number of queries respectively. The next line contains n integers $a_{i}\left(1 \leq a_{i} \leq 10^{9}\right)$. Then q lines follow, each line containing a query with three integers l, r and $k(1 \leq l, r \leq n)$.

Output

For each query print the answer in a single line (Look at the samples).
Explanation: For the first sample.
indexes: 1234
array $=\{1,3,4,3\}$
For first query $[1,2]$ we have the subarray $\{1,3\}$, after sorting we have $\{1, \overline{3}\}$, so the value in the 2 -th position is 3 .

For second query $[2,4]$ we have the subarray $\{3,4,3\}$, after sorting we have $\{\overline{3}, 3,4\}$, so the value in the 1 -th position is 3 .

For third query $[1,4]$ we have the subarray $\{1,3,4,3\}$, after sorting we have $\{1,3,3, \overline{4}\}$, so the value in the 4 -th position is 4 .

Sample Input

43
1343
122
241
144
83
47853612
451
183
353
1010
86217310954
183
771
781
991
2109
272
571
10101
9102
7104

Sample Output

