Last week Andrea explained to her little students the divisibility rule for 3 . "A number is divisible by 3 - she told them - if the sum of the digits is divisible by 3 ".

In order for them to practise it, she decided to give them homework. But she was in a hurry and, instead of giving them many different numbers, she decided to give them just a few. Each exercise was composed of a number n that should be used to build a big number concatenating all the numbers between 1 and n. For example, for $n=2$, the number would be 12 , when $n=6$ would be 123,456 , and for $n=13$ it would be the long $12,345,678,910,111,213$. Andrea asked them whether

> 123456789101112131415 161718192021222324252 627282930313233343536 373839404142434445464 748495051525354555657 585960616263646566676 869707172737475767778 798081828384858687888 990919293949596979899 those created numbers were or not divisible by 3 .

This trick let her give them exercises with a small formulation but with a long solution. Now it is time to check the students responses, and the idea has backfired on her.

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following. Each test case contains the number $1 \leq n \leq 10^{9}$.

Output

For each test case, print ' YES ' if the created number is multiple of 3, and ' NO ' otherwise.

Sample Input

$$
3
$$

2
6
130000000

Sample Output

YES
YES
NO

