Joana Vasconcelos is a Portuguese artist who uses everyday objects in her creations, like electric irons or plastic cutlery. She is an inspiration to Ana, who wants to make ceiling hanging sculptures with straight knitting needles and balls of wool. For safety reasons, there will be a ball at each end of each needle. Knitting needles vary in colour, length and thickness (to allow intersections of needles).

Sculptures are to be exhibited in room corners, which provide a 3D Cartesian coordinate system, with many lamps on the ceiling. Sculpture designs are made with the coordinates of the centres of the balls of wool in which knitting needles are stuck. That is, each needle N is represented by a set of two different triples: $N=\left\{(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right\}$.

Ana dislikes closed chains. A true closed chain is a sequence of k distinct needles, $N_{1}, N_{2}, \ldots, N_{k}$ (for some $k \geq 3$), such that:

$$
\begin{aligned}
& N_{1}=\left\{\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)\right\}, \\
& N_{2}=\left\{\left(x_{2}, y_{2}, z_{2}\right),\left(x_{3}, y_{3}, z_{3}\right)\right\}, \ldots, \\
& N_{k}=\left\{\left(x_{k}, y_{k}, z_{k}\right),\left(x_{k+1}, y_{k+1}, z_{k+1}\right)\right\}, \text { and } \\
& \left(x_{k+1}, y_{k+1}, z_{k+1}\right)=\left(x_{1}, y_{1}, z_{1}\right) .
\end{aligned}
$$

But her dislike of closed chains is so extreme that the shadow of the sculpture on the floor has to be free of "floor closed chains". Given any needle $N=\left\{(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right\}$, let $N^{\downarrow}=\left\{(x, y),\left(x^{\prime}, y^{\prime}\right)\right\}$ denote the shadow of needle N on the floor. For Ana (who is an artist), a floor closed chain is also a sequence of k distinct needles, $N_{1}, N_{2}, \ldots, N_{k}$ (for some $k \geq 3$), such that:

- $N_{i}^{\downarrow} \neq N_{j}^{\downarrow}$, for every $1 \leq i<j \leq k$ (the k needle shadows are all distinct);
- $N_{1}^{\downarrow}=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}, N_{2}^{\downarrow}=\left\{\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right\}, \ldots$,

$$
N_{k}^{\downarrow}=\left\{\left(x_{k}, y_{k}\right),\left(x_{k+1}, y_{k+1}\right)\right\}, \text { and }\left(x_{k+1}, y_{k+1}\right)=\left(x_{1}, y_{1}\right) .
$$

Consider the sculpture depicted in the figure, which has the following four knitting needles:

$$
\begin{array}{ll}
A=\{(12,12,8),(10,5,11)\}, & B=\{(12,12,8),(4,14,21)\}, \\
C=\{(12,12,8),(12,20,8)\}, & D=\{(4,14,21),(10,5,21)\}
\end{array}
$$

This structure is not free of closed chains because, although there is no true closed chain, the sequence of needles A, B, D is a floor closed chain.

Write a program that, given the knitting needles of a sculpture, determines whether there is a true or a floor closed chain in the sculpture.

Input

The input file contains several test cases, each of them as described below.
The first line of the input has one integer, K, which is the number of knitting needles in the sculpture. Each of the following K lines contains six integers, $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}$, and z_{2}, which indicate that $\left\{\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)\right\}$ is the set of triples of a needle. Any two distinct needles are represented by different sets of triples.

Constraints

$1 \leq K \leq 50000 \quad$ Number of knitting needles
$1 \leq x_{i}, y_{i}, z_{i}<1000 \quad$ Coordinates of each triple

Output

For each test case, the output must follow the description below.
The output has two lines, each one with a string. The string in the first line is: 'True closed chains', if there is some true closed chain in the sculpture; 'No true closed chains', otherwise. The string in the second line is: 'Floor closed chains', if there is some floor closed chain in the sculpture; 'No floor closed chains', otherwise.

Sample Input

4
$\begin{array}{llllll}12 & 12 & 8 & 10 & 5 & 11\end{array}$
1212841421
1212812208
4142110521
3
505050100100100
$100 \quad 100 \quad 100 \quad 50 \quad 5090$
$50 \quad 50 \quad 90 \quad 505050$
4
111222
222155
944942
944994
3
115137
137445
445115

Sample Output

No true closed chains
Floor closed chains
True closed chains
No floor closed chains
No true closed chains
No floor closed chains
True closed chains
Floor closed chains

