You have an empty $1 \times n$ grid. The cells of the grid are indexed from 1 to n from left to right. You have to put m identical coins in the grid. A cell can contain zero or more coins. If you pick a pair of cells each containing at least one coin, the distance between the cells must be a prime number.

How many ways you can place the coins? As the number can be large, find answer modulo $10^{9}+7$. Two ways are different if there is at least one cell which contains different number of coins.

The distance between two cells indexed i, j is $|i-j|$.

Input

The first line contains $T(1 \leq T \leq 2000)$ (the number of test cases). Each of the next T lines contains two integers $n\left(1 \leq n \leq 10^{5}\right)$ and $m\left(1 \leq m \leq 10^{5}\right)$ separated by a single space.

Output

For each case, print the case number and the answer modulo $10^{9}+7$.

Hint:

In the first case, you can put both coins in cell 1,2 or 3 . Or you can put a coin in cell 1 and put another coin in cell 3 . See picture.

Note that in the 2 nd case putting 3 coins in cell $1,3,5$, is not valid, because the distance between cell 5 and cell 1 is a non-prime.

Sample Input

2
32
63

Sample Output

Case 1: 4
Case 2: 24

