Imagine you have an array of n integers $a=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}\right]$. To find the extreme sum of them you have to do the following operations:

1. Create a new list $t=\left[a_{0}+a_{1}, a_{1}+a_{2}, \ldots, a_{n-2}+a_{n-1}\right]$.
2. Let $a=t$.
3. If a has only one element remaining, exit. Otherwise go to 1 .

The last remaining element is the extreme sum for the given array. Extreme sum for $a=[1,2,4]$ is 9.

To find the extreme XOR Sum, you have to do XOR operation instead of addition operation (in the step 1 above).

You are given an array of integers a. You have to answer q queries. Each query has the form of ' $b e$ '. You have to find the extreme XOR sum of the array $\left[a_{b}, a_{b+1}, a_{b+2} \ldots a_{e}\right]$.

Input

The first line contains $T(1 \leq T \leq 25)$. For each test case:

- The first line contains $n\left(1 \leq n \leq 10^{4}\right)$.
- The second line contains n integers denoting the array a. Each element of the array will be an integer between 0 and 10^{9}.
- The third line contains $q(1 \leq q \leq 30000)$.
- Each of the next q lines contains two integers b and $e(0 \leq b \leq e<n)$.

Output

For each test case, print the case number in the first line. In the next q lines, print a single line, the extreme XOR sum for the range $[b, e]$ for the corresponding query.

Sample Input

Sample Output

Case 1:

