We have the following recursive function:

$$
\begin{aligned}
f(1) & =x \\
f(n) & =(a \cdot f(n-1)+c) \bmod m, \text { with } n \geq 2, n \in \mathbb{Z}^{+}
\end{aligned}
$$

Remember that the operation mod calculates the remainder of the integer division.
With the previous recursive function you should generate a sequence containing the first n elements, which are: $f(1), f(2), f(3), f(4), \ldots, f(n)$. Then, you should sort those numbers in ascending order (with respect to its value), so you can tell which number is located in the i-th position of the sorted sequence.

Input

There are several test cases. The first line of each test case has six integer numbers: a, c, m, x, q, n separated by spaces $\left(2 \leq a<m, 0 \leq c<m, 3 \leq m \leq 10^{3}, 0 \leq x<m, 1 \leq q \leq 10^{4}, 1 \leq n \leq 10^{8}\right)$. The remaining lines of each test case have q integer numbers. Each one corresponds to the position in the sorted sequence whose value wants to be known.

Output

For each query you should print a single line containing the integer number in the i-th position of the sorted sequence.

Sample Input

```
7493510
```

2
10
3
9
4

Sample Output

1
8
2
7
3

