Tangamandapio's national competition is coming and it is time to write problems so all students are very excited to present their own problems.

X likes subsequences and he wants to propose a problem about counting subsequences.
Y loves permutations and he wants to propose a problem that requires knowing if a string has exactly $K$ different permutations.

Both of them think that their own problem is the best.
Z is a friend of X and Y , and he wants to finish the discussion so he proposes to create a problem that combines both problems in one.

Thus, they came with the following problem:
Given a string of text $S$ count the number of subsequence that have exactly $K$ different permutations.

A string $T$ is a subsequence of another string $S$, if deleting some elements from $S$ and without changing the order of the remaining elements, it is possible to get $T$.

## Input

There are multiple test cases. Each Test case contains two lines. The first line is a string $S(1 \leq|S| \leq$ $10^{3}$ ) consisting of lowercase English alphabet. The second line contains an integer $K\left(1 \leq K \leq 10^{3}\right)$.

## Output

For each test case print exactly one line containing one integer representing the number of subsequences that have exactly $K$ different permutations modulo $10^{9}+9$.

## Sample Input

## aaab

3
abcc
2

## Sample Output

3
5

