Bill has a Christmas Lights String to decorate his house, made with K lights $L[1], L[2], \ldots, L[K]$ attached in sequence to a wire. The behavior of each light is determined by a programmable controller connected to the wire, turning on and off lights at every second.

Bill has programmed the controller to change the state of the lights during M seconds. He defines a pair of numbers a_{i}, b_{i} with $a_{i} \leq b_{i}$, for each second $i(1 \leq i \leq M)$. At second 0 , the string of lights is initialized with a random initial configuration (some lights on and other lights off). At each second i, from 1 to M, the state of all lights in $L\left[a_{i} . . b_{i}\right]$ is simultaneously switched from on to off and vice versa. However, Bill added a curious little feature to the controller's algorithm: whenever the ends $L\left[a_{i}\right]$ or $L\left[b_{i}\right]$ are off, just before the above-described switching takes place at time i, some more lights in the string can switch states at moment i. In particular, if $L\left[a_{i}\right]$ is off and there is a light, say at l_{i}, to the left of a_{i} that is on (and all the lights between l_{i} and a_{i} are off), then the lights in the interval $L\left[l_{i} . . a_{i}-1\right]$ will also switch states at moment i. Similarly, if $L\left[b_{i}\right]$ is off and there is a light, say at r_{i}, to the right of b_{i} that is on (and all the lights between b_{i} and r_{i} are off), then the lights in the interval $L\left[b_{i}+1 . . r_{i}\right]$ will also switch states at moment i.

Suppose that a light turned on is represented with ' 1 ' and a light turned off is represented with ' 0 '. For example, consider $K=18, M=5, a_{1}=5, b_{1}=12, a_{2}=10, b_{2}=11, a_{3}=5, b_{3}=8, a_{4}=3$, $b_{4}=6, a_{5}=1$, and $b_{5}=17$, with initial configuration 000110010011100000 . Note that the state of all lights at each second is:

- 000110010011100000 at second 0.
- 000101101100100000 at second 1.
- 000101101011000000 at second 2.
- 000010010011000000 at second 3.
- 001101100011000000 at second 4.
- 110010011100111110 at second 5 .

After several days of operation, Bill suspects that he has created a truly awesome algorithm. For this purpose, he would like to run multiple trials, with different initial configurations and parameters a, b, but he is afraid the lights will break due to heavy abuse. Can you help him in building an algorithm for finding the final state of all lights at second M after each trial?

Input

The first line of the input contains a positive integer T indicating the number of test cases. The first line of a test case contains two blank-separated integers K and $M\left(2 \leq K \leq 10^{6}, 0 \leq M \leq 10^{4}\right)$ indicating, respectively, the number of lights in the string and the number of seconds to consider. The second line contains a hexadecimal string (using digits '0123456789ABCDEF') without leading zeros, describing the initial configuration of lights if it is written in binary notation. If the given hexadecimal string requires less than K bits in binary notation, then complete it with leading zeros to reach K digits. Finally follow M lines: line i contains exactly two blank-separated integers a_{i} and b_{i} describing the parameters controlling the behavior of the lights at second $i\left(1 \leq i \leq M, 1 \leq a_{i} \leq b_{i} \leq K\right)$.

Output

For each test case, print a single line with a hexadecimal string (using digits '0123456789ABCDEF') without leading zeros, describing the state of all lights at second M. You must use the same notation used to codify the initial configuration of lights.

Sample Input

Sample Output

