We know, if we want to check whether a decimal number is divisible by 3 , we need to find the sum of digits of that number. If the sum is divisible by 3 , then the original number will also be divisible by 3 .

It took me a while to prove this. And then I realized this is true not only for 3 but for some other numbers as well. Sometimes not only for decimals but also for numbers in other bases as well. Can you find them?

In particular, given a particular divisor D, you will have to find how many valid different bases B, less or equal to $B M A X$, are possible such that when we represent any number N in base B and the sum of digits of N is S, the following implication is true:

N is divisible by D IF AND ONLY IF S is divisible by D.

For example, if $B M A X=10, D=3$, the answer is 3 . The bases are 4,7 and 10 .

Input

First line will contain $T(T \leq 10000)$, no of test cases. T lines will follow each with two integers BMAX $\left(2 \leq B M A X \leq 10^{18}\right)$ and $\mathrm{D}\left(1 \leq D \leq 10^{18}\right)$. You can assume that base of a number system is positive and not less than 2 .

Output

For each case print one line, 'Case C : A ', where C is the case no and A is the required answer. Look at the output for sample input for details.

Sample Input

2
103
203

Sample Output

Case 1: 3
Case 2: 6

