The whole world has become worried about the rapid spread of a virus. Scientists need to understand the folding of RNA of that virus so that they can have more information about its structure.

The basic RNA-folding problem is defined by a string S of length n over the four-letter alphabet $\{\mathrm{A}, \mathrm{U}, \mathrm{C}, \mathrm{G}\}$, and an integer d (distance parameter). Each letter in this alphabet represents an RNA nucleotide. Nucleotides A and U are called complimentary as are the nucleotides C and G. A matching consists of a set M of disjoint pairs of positions of S, i.e. in a set M no position i can be paired with two different positions j and j^{\prime}. If pair (i, j) is in M, then the nucleotide at i-th position is said to match the nucleotide at position j. A match is a permitted match if the nucleotides at sites i and j are complimentary, $i<j$ and $|i-j|>d$. A matching M is non-crossing if and only if it does not contain any four sites $i<i^{\prime}<j<j^{\prime}$ where (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are matches in M. Finally, a permitted matching M is a matching that is non-crossing, where each match in M is a permitted match. The basic RNA-folding problem is to find a permitted matching of maximum cardinality.

In this problem, you need to find the maximum cardinality of a permitted matching and the number of different sets M of that maximum cardinality. A set M is different from another set M^{\prime} if there exists at least one pair (i, j) in M and $\left(i^{\prime}, j^{\prime}\right)$ in M^{\prime} such that either i and i^{\prime} or j and j^{\prime} are different.

Input

The first line of input file contains the number of test cases, $T(1 \leq T \leq 80)$. Then T cases follow:
Each case consists of two lines. The first line contains one integer: $d(0 \leq d \leq|S|)$. Then the second line contains the string $S(1 \leq|S| \leq 250)$. It will contain only the uppercase characters $\{\mathrm{A}, \mathrm{U}, \mathrm{C}, \mathrm{G}\}$.

Output

For each case, print 'Case $x: y z^{\prime}$ in a separate line, where x is the case number, y is the maximum cardinality and z is the number of sets with maximum cardinality. As the value of z can be very large, print z modulo 10007.

Explanation of Sample cases:

For 1st case, there is no pair of positions which satisfies the conditions of permitted match, i.e. empty set is the only possible answer.

For 2 nd case, the matches are shown below where the first position of a pair is denoted by ' (' and the other position is denoted by ')':

GGACCUUUUGGGACGC
((. ((....)).).)

This is the only possible set with 4 permitted matches: $\{(1,15),(2,13),(4,11),(5,10)\}$.

Sample Input

2
1
AUA
4
GGACCUUUUGGGACGC

Sample Output

Case 1: 01
Case 2: 41

