Sometimes, going shopping with grandma can be a very exciting and fun adventure! Eloi is going shopping with grandma this evening because of the holidays; just perfect for his saying: "Sewing, baking, and shopping with grandma, it all goes together... a grandmother, at holiday time, is worth gold." They also are stopping at the pharmacy: granny is losing her memory and her bottle of memory pills is running low ... how sad!

The memory pills come in two sizes: large and small. The dose in each large pill is equivalent to that in two small ones. Eloi observes granny picks a pill at random from the bottle every day: if it's a small one, she takes it; otherwise, she splits it and takes a half, replacing the other which is from then on considered a small pill.

Given a certain bottle with l large pills and s small pills, we say that the pair (l, s) is the bottle configuration. Eloi is interested in the pill tree associated with bottle configuration (l, s), in which left or right branching represents a large or small pill being picked, respectively. Formally it's the labeled binary tree with root (l, s) in which a node (u, v) has a left child $(u-1, v+1)$ if $u>0$ and a right child $(u, v-1)$ if $v>0$.

For example, the pill tree associated with bottle configuration $(2,1)$ (2 large, 1 small) is depicted on the right:

Eloi then asks himself: how many nodes does the pill tree associated with bottle configuration (l, s) have?

Input

The input consists of several test cases. Each test case consists of a line with two blank-separated integers l and $s(0 \leq l \leq 1000$ and $0 \leq s \leq 1000)$.

The end of the input is given by $l=s=0$, which should not be processed as a test case.

Output

For each l and s, output a line with the number of nodes in the pill tree associated to (l, s). Since this number can be very large, print it modulo 9999959999.

Sample Input

21

65
1002
1978
10001000
00

Sample Output

