In Euclidean geometry, a regular polygon is a polygon that is equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Tara drew a regular convex polygon on a paper plane. The polygon has N vertices. The lower side of the polygon is parallel to the X-axis. The lower side is the side having minimum value of $\left(y_{a}+y_{b}\right)$ among all sides of that polygon, where y_{a} and y_{b} are the y coordinate of two different end points of a side. Unfortunately her friend Gudu lost the paper. Tara only can remember the length of each side L and lower left point $P_{0}(x, y)$ of that polygon. Help Tara to draw the polygon again.

Input

First line of the input contains a positive integer $T(\leq 20)$ denoting the number of test cases. Each of the following T lines contains four integers. $N(2<N \leq 1000), L(0<L \leq 100), x(|x| \leq 100)$, y $(|y| \leq 100)$ as described before.

Output

For each case, print the case number in a single line first. Print N points of the polygon in next N lines. Each point consists of two numbers rounded to six decimal places. Points should be ordered by counter-clockwise starting from P_{0}. Errors less than 10^{-4} will be ignored. Consecutive output set should be separated by a blank line.

See sample output format.

Sample Input

2
4500
5500

Sample Output

Case \#1:
0.0000000 .000000
5.0000000 .000000
5.0000005 .000000
0.0000005 .000000

Case \#2:
0.0000000 .000000
5.0000000 .000000
6.5450854 .755283
2.5000007 .694209
-1.545085 4.755283

