How many different ways you can distribute N (distinguishable) marbles into K boxes where each box should contain at least X marbles? Two distributions are considered different if there is at least one marble which is contained by different boxes in the distributions.

Input

First line of the input contains T ($1 \le T \le 50$) which is the number of test cases. Each of the following T lines contains three space separated integers N, K and X ($1 \le X \le N \le 100000$ and $1 \le K \le 50$).

Output

Output the case number, followed by the required quantity. Output the result modulo 1000000007.

Note: For the 1st case the possible distributions are (the *i*-th element is the box number for the *i*-th marble): $\{1,1,2,2\}$, $\{1,2,1,2\}$, $\{2,2,1,1\}$, $\{2,1,2,1\}$, $\{2,1,2,1\}$, $\{2,1,1,2\}$.

Sample Input

Sample Output

Case 1: 6
Case 2: 0

Case 3: 76094425