How many different ways you can distribute N (distinguishable) marbles into K boxes where each box should contain at least X marbles? Two distributions are considered different if there is at least one marble which is contained by different boxes in the distributions.

Input

First line of the input contains $T(1 \leq T \leq 50)$ which is the number of test cases. Each of the following T lines contains three space separated integers N, K and $X(1 \leq X \leq N \leq 100000$ and $1 \leq K \leq 50)$.

Output

Output the case number, followed by the required quantity. Output the result modulo 1000000007.
Note: For the 1st case the possible distributions are (the i-th element is the box number for the i-th marble) : $\{1,1,2,2\},\{1,2,1,2\},\{1,2,2,1\},\{2,2,1,1\},\{2,1,2,1\},\{2,1,1,2\}$.

Sample Input

3

422
1053
900520
Sample Output
Case 1: 6
Case 2: 0
Case 3: 76094425

