An infinite integer sequence (S) can be generated from the following quadratic equation

$$
S(x)=a x^{2}+b x+c \quad[a, b, c \text { are non-negative integers }] \text { and } x=0 \rightarrow \infty(x \text { is integer })
$$

$S(x)$ is the x-th element of sequence S.
For example, if $a=0, b=1$ and $c=0$, then $S(x)=x$
So the sequence will be: $0,1,2,3,4,5,6,7,8,9,10, \ldots \infty$
A fraction p / q (p and q are relatively prime) is associated with the sequence S in such way that

$$
\frac{p}{q}=\sum_{x=0}^{\infty} S(x)\left(\frac{1}{10}\right)^{x+1} \quad 0.0+
$$

Here sequence $0,1,2,3,4,5,6,7,8,9,10, \ldots \infty$ is associated with $0.002+$ fraction

$$
\frac{1}{81}=\frac{0}{10}+\frac{1}{10^{2}}+\frac{2}{10^{3}}+\frac{3}{10^{4}}+\ldots=0.0123456790 \ldots
$$

$$
0.00004+
$$

$$
0.000005+
$$

(explained in right)
In summary, for a given triplet a, b, c there will be a sequence S and for a sequence S there will be a fraction p / q

But for this problem fraction p / q will be given. You have to find out how many integer triples (a, b, c) exist for some given limit L where $0 \leq$ $a, b, c \leq L$.
$0.0000006+$ $0.00000007+$ $0.000000008+$ $0.0000000009+$ $0.00000000010+$

Input

Given $T\left(\leq 10^{4}\right)$ denoting number of test cases. Each case consists of 3 positive integers p, q and L.
0.0123456790 ...
p and q are relatively prime to each other.
L is the maximum value for a, b, c. Denominator $q>1$ and $p, q \leq 10^{7}$ and $L \leq 10^{5}$

Output

You have to report the number of integer triples (a, b, c) that can be formed where $0 \leq a, b, c \leq L$.
See sample Input output for format.

Sample Input

3
181100
2320
23100000

Sample Output

Case 1: 1
Case 2: 7
Case 3: 21

