Nowadays emoticon has become an art. People are no longer limited to simple ones like ':-)', ':-(',
 cute to me. Given a string S consisting of only '_'s and ' \sim 's, I was wondering what is the maximum number of disjoint subsequences of "~_" (quote for beauty) in the string S.

For example, if $S=$ "~_ _- " " then the answer is 2 . However, for $S={ }^{\prime}{ }^{\sim}{ }^{\sim} "$ " the answer is 0 .

Input

Input starts with a positive integer $T(\leq 5,000)$, denoting the number of test cases. Hence follows T test cases. Each case consists of a single string made of only ' \sim ' and '_'. The length of the strings would be at most 100,000 and the sum of lengths of the strings will be $2,100,000$ at most.

Output

For each test case, print the case number followed by the answer.

Hint:

- $S[1 \ldots n]$ means S is a string of length n and it is 1 -indexed.
- S_{i} means i 'th character of S.
- A string $S[1 \ldots n]$ is a subsequence of another string $T[1 \ldots m]$, if we can find: $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ such that, $S[i]=T\left[t_{i}\right]$ for $1 \leq i \leq n$ and $1 \leq t_{1}<t_{2}<\ldots<t_{n} \leq m$. For example, 'abc' is a subsequence of 'aabbcc' but not of 'bca'.
- Two subsequences are disjoint if same character (position matters) is not used in both of the subsequences. For example, let $S=$ 'abca'. 'ab' and 'ca' are two disjoint subsequences of S. However, if $S=$ 'abc' then 'ab' and 'ac' are not disjoint subsequences. In both of these examples the subsequences are unique. However, for $S=$ 'aabb' let's form two subsequences $S_{1} S_{3}$ and $S_{2} S_{4}$ (both are 'ab'), both of these are disjoint. But if we have chosen $S_{1} S_{3}$ and $S_{1} S_{4}$ then they would not be disjoint.

Sample Input

Sample Output

Case 1: 1
Case 2: 1
Case 3: 0
Case 4: 2
Case 5: 2

