
Fermat’s little theorem states that if p is a prime number, then for any integer a, the number (ap−a)
is an integer multiple of p. In the notation of modular arithmetic, this is expressed as

ap ≡ a(mod p)

For example, if a = 2 and p = 7, 27 = 128, and 128− 2 = 7× 18 is an integer multiple of 7. We can
also write 128%7 = 2, here % is the modulo operator used in C/C++ or Java.

If a is not divisible by p, Fermat’s little theorem is equivalent to the statement that ap−1 − 1 is an
integer multiple of p, or in symbols

ap−1 ≡ 1(mod p)

For example, if a = 2 and p = 7 then 26 = 64 and 64− 1 = 63 is a multiple of 7. We can also write
64%7 = 1.

You are given a set S which contains 1 to N . You want to find two subsets of S, X and Y such
that the following conditions are met:

1. X ∩ Y = ∅

2. Let bitwise XOR of every element of X equals U and Y equals V . U must be less than or equal
to V .

You want to find out number of ways you can choose such subset X and Y .
Two ways (X1, Y1) and (X2, Y2) will be equal if X1 equals X2 and Y1 equals Y2 or X1 equals Y2 and

Y1 equals X2.

For example is S = {1, 2}, the ways are:

1. X = ∅, Y = ∅. [U = 0, V = 0]

2. X = ∅, Y = {1}. [U = 0, V = 1]

3. X = ∅, Y = {1, 2}. [U = 0, V = 1 ∧ 2 = 3, (∧ means bitwise XOR in C/C++/Java)]

4. X = ∅, Y = {2}. [U = 0, V = 2]

5. X = {1}, Y = {2}. [U = 1, V = 2]

Now, given N , you need to find the number of ways you can choose two subsets of S such that the
2 conditions meet, modulo 1000000007 (109 + 7).

Input
First line contains T (T ≤ 100), the number of test cases. Each of the next T lines each contains an
integer N (0 ≤ N < 1010000).

Output
For each case print one line, ‘Case C: W ’, where C is the case number, and W is the required answer
for that case.

Sample Input
2
2
3

Sample Output
Case 1: 5
Case 2: 14


