Given N and K, find the lexicographically K-th (1-indexed) smallest permutation $P_{1}, P_{2}, \ldots, P_{N}$ of the first N positive integers $(1,2, \ldots, N)$, such that the adjacent numbers are relatively prime $\left[\operatorname{gcd}\left(P_{i}, P_{i+1}\right)=1\right.$, for $\left.1 \leq i<N\right]$ in the permutation. A permutation of N numbers A_{1}, A_{2}, \ldots, A_{N} is lexicographically smaller than another permutation $B_{1}, B_{2}, \ldots, B_{N}$ if $A_{i}<B_{i}$ for some i and $A_{j}=B_{j}$ for all $j<i$.

Input

First line of the input contains an integer $T(\leq 20)$, which is the number of test cases. Each of the next T lines contain two space separated integers $N(1 \leq N \leq 28)$ and $K\left(1 \leq K \leq 10^{18}\right)$.

Output

For each test case output the case number and then N space separated integers which is the lexicographically K-th smallest permutation of the first N positive integer numbers, such that adjacent numbers in the permutation are relatively prime. If there are less than K such permutations then output ' -1 '.

See sample input output for exact formatting.

Sample Input

3
33
42
420

Sample Output

Case 1: 213
Case 2: 1432
Case 3: -1

