Given N and K, find the lexicographically K-th (1-indexed) smallest permutation P_1, P_2, \ldots, P_N of the first N positive integers $(1, 2, \ldots, N)$, such that the adjacent numbers are relatively prime $[gcd(P_i, P_{i+1}) = 1$, for $1 \le i < N]$ in the permutation. A permutation of N numbers A_1, A_2, \ldots, A_N is lexicographically smaller than another permutation B_1, B_2, \ldots, B_N if $A_i < B_i$ for some i and $A_j = B_j$ for all j < i.

Input

First line of the input contains an integer $T (\leq 20)$, which is the number of test cases. Each of the next T lines contain two space separated integers $N (1 \leq N \leq 28)$ and $K (1 \leq K \leq 10^{18})$.

Output

For each test case output the case number and then N space separated integers which is the lexicographically K-th smallest permutation of the first N positive integer numbers, such that adjacent numbers in the permutation are relatively prime. If there are less than K such permutations then output '-1'. See sample input output for exact formatting

See sample input output for exact formatting.

Sample Input

Sample Output

Case 1: 2 1 3 Case 2: 1 4 3 2 Case 3: -1