At time $0, R$ red frogs and G green frogs are sitting on a straight line. All the positions of the frogs are non-negative integer numbers. Every second, all the frogs jump. Each of the frogs has its own velocity, i.e., every second the i-th frog jumps V_{i} units to its left or right depending on the color. Every red frog jumps to its right, and every green frog jumps to its left.

The line is divided into $N+1$ contiguous segment. The left end of the first segment is always 0 and the right end of the $N+1$-st segment is 10^{9}. The segments are denoted by a sequence of N positive integers. For example, if $N=1$ and the sequence has 1 integer number 10, then there are two segments, one is from 0 to 10 and another is from 10 to 10^{9}, both inclusive.

You are given the initial positions of all the $R+G$ frogs and a sequence of positive integers describing the segments. Find the minimum time it will take for all the frogs to reach a single segment. A frog is said to be on a segment if and only if it's sitting on some points inside the segment (including the endpoints). Please note that a frog is not said to be inside a segment when it's jumping.

Please note that, when a frog is on any of the N intermediate boundary points, they can be considered to be part of either the left or the right segment.

Input

Input starts with a single positive integer, $T \leq 10$, on a single line, denoting the number of test cases.
The first line of each test cases will be a blank line. Next line will contain three positive integers R, G and $N(1 \leq R, G \leq 100,000,1 \leq N \leq 100,000)$.

Next five lines will be as follows:

1. R non negative integers, where the i-th integer represents the position of the i-th red frog.
2. R non negative integers, where the i-th integer represents the velocity of the i-th red frog.
3. G non negative integers, where the i-th integer represents the position of the i-th green frog.
4. G non negative integers, where the i-th integer represents the velocity of the i-th green frog.
5. A sequence of N positive integers describing the segments. All the numbers are greater than 0 and are less than 10^{9}

Note that, every frogs' position and velocities are between 0 and 10^{9}, inclusive.
Please note that the input file is around 4 MB , use faster input/output routine.(i.e. scanf/printf instead of cin/cout for $\mathrm{c}++$)

Output

For every case print the output in format, 'Case $X: \quad Y$ ', where X is the number of test case, starting from 1 and Y is the minimum time it takes for all the frogs to reach a single segment. If it's impossible for all the frogs to reach a single segment, then Y should be ' -1 '.

Sample Input

2

111
10
10000
20
10000
1000000

221
12
99100
10001001
100200
100

Sample Output

Case 1: 0
Case 2: 1

