Given an undirected weighted graph G, yo should find one of spanning trees specified as follows

The graph G is an ordered pair (V, E), where V is a set of vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and E is a edge $e \in E$ has its weight $w(e)$.
A spanning tree T is a tree (a connected sub A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n
vertices with $n-1$ edges. The slimness of a spanning tree T is defined as the difference between Figure 5: A graph G and the weights of the edges the largest weight and the smallest weight among the $n-1$ edges of T.
For example, a graph G in Figure $5\left(\right.$ a) has four vertices $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and five undirected edges $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$. The weights of the edges are $w\left(e_{1}\right)=3, w\left(e_{2}\right)=5, w\left(e_{3}\right)=6, w\left(e_{4}\right)=6, w\left(e_{5}\right)=7$ $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$. The
as shown in Figure $5(\mathrm{~b})$

(b)

(c)

(d)

Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)(d). The spanning tree T_{a} in Figure 6(a) has three edges whose weights are 3,6 and 7 . The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree T_{a} is 4 . The slimnesses of spanning trees T_{b}, T_{c} and T_{d} shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1 , thus the spanning tree T_{d} in Figure $6(\mathrm{~d})$ is one of the slimmest spanning trees whose slimness is 1 .

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format
n m
$a_{1} b_{1} \quad w_{1}$
$a_{m} b_{m} w_{m}$
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume $2 \leq n \leq 100$ and $0 \leq m \leq n(n-1) / 2 . a_{k}$ and $b_{k}(k=1, \ldots, m)$ are positive integers less than or equal to n, which represent the two vertices $v_{a_{k}}$ and $v_{b_{k}}$ connected by the k-th edge e_{k}. w_{k} is a positive integer less than or equal to 10000 , which indicates the weight of e_{k}. You can assume that the graph $G=(V, E)$ is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, ' -1 ' should be printed. An output should not contain extra characters.

Sample Input	
	5
	23
	35
	46
	46
	47
	6
	210
	3100
	490
	320
	480
	440
	1
	21
	0
	1
	21
	3
	22
	35
	36
	10
	2110
	3120
	4130
	5120
	3110
	4120
	5130
	4120
	5110
	5120
	10
	29384
	3887
	42778
	56916
	37794
	48336
	55387
	4493
	56650
	51422
	8
	21
	3100
	4100
	5100
	550
	550
	550
	1150

Sample Output

