Starting with x and repeatedly multiplying by x, we can compute x^{31} with thirty multiplications:

$$
x^{2}=x \times x, \quad x^{3}=x^{2} \times x, \quad x^{4}=x^{3} \times x, \quad \ldots, \quad x^{31}=x^{30} \times x
$$

The operation of squaring can appreciably shorten the sequence of multiplications. The following is a way to compute x^{31} with eight multiplications:

$$
\begin{aligned}
& x^{2}=x \times x, \quad x^{3}=x^{2} \times x, \quad x^{6}=x^{3} \times x^{3}, \quad x^{7}=x^{6} \times x, \quad x^{14}=x^{7} \times x^{7}, \\
& x^{15}=x^{14} \times x, \quad x^{30}=x^{15} \times x^{15}, \quad x^{31}=x^{30} \times x .
\end{aligned}
$$

This is not the shortest sequence of multiplications to compute x^{31}. There are many ways with only seven multiplications. The following is one of them:

$$
\begin{aligned}
& x^{2}=x \times x, \quad x^{4}=x^{2} \times x^{2}, \quad x^{8}=x^{4} \times x^{4}, \quad x^{10}=x^{8} \times x^{2}, \\
& x^{20}=x^{10} \times x^{10}, \quad x^{30}=x^{20} \times x^{10}, \quad x^{31}=x^{30} \times x
\end{aligned}
$$

There however is no way to compute x^{31} with fewer multiplications. Thus this is one of the most efficient ways to compute x^{31} only by multiplications.

If division is also available, we can find a shorter sequence of operations. It is possible to compute x^{31} with six operations (five multiplications and one division):

$$
x^{2}=x \times x, \quad x^{4}=x^{2} \times x^{2}, \quad x^{8}=x^{4} \times x^{4}, \quad x^{16}=x^{8} \times x^{8}, \quad x^{32}=x^{16} \times x^{16}, \quad x^{31}=x^{32} \div x
$$

This is one of the most efficient ways to compute x^{31} if a division is as fast as a multiplication.
Your mission is to write a program to find the least number of operations to compute x^{n} by multiplication and division starting with x for the given positive integer n. Products and quotients appearing in the sequence of operations should be x to a positive integer's power. In other words, x^{-3}, for example, should never appear.

Input

The input is a sequence of one or more lines each containing a single integer $n . n$ is positive and less than or equal to 1000 . The end of the input is indicated by a zero.

Output

Your program should print the least total number of multiplications and divisions required to compute x^{n} starting with x for the integer n. The numbers should be written each in a separate line without any superfluous characters such as leading or trailing spaces.

Sample Input

Sample Output

