Given two strings A and B over an alphabet Σ, the edit distance between A and B is the minimum number of edit operations needed to convert A into B. The three edit operations are the following:
(i) change: replace one character of A by another single character of B.
(ii) deletion: delete one character from A.
(iii) insertion: insert one character of B into A.

For example, the following figure shows that the edit distance between the strings $A=\operatorname{abcdefg}$ and $B=$ ahcefig is 3 . The edit operations are a change (i.e., replacing b of A by h of B), a deletion (i.e., deleting d from A), and an insertion (i.e., inserting i of B into A).

We now define a period of a repetitive string as follows: The string p is called the exact period of a string x if x can be written as $x=p^{k}$, where $k \geq 1$ and p is the shortest string. For example, if x $=$ abababab then $x=(\mathrm{abababab})^{1}=(\mathrm{abab})^{2}=(\mathrm{ab})^{4}$. Thus, the string ab is the exact period of x.

We define an approximate period similarly. Given two strings x and y, suppose that the string x is partitioned into substrings $p_{i}, 1 \leq i \leq t$, where p_{i} is not a null string, i.e., $x=p_{1} \cdot p_{2} \cdot p_{3} \cdots p_{t}$. If the edit distance between a string y and each substring p_{i} is less than or equal to an integer k, string y is called a k-approximate period of string x.

In this problem, given two strings x and y, we want to find the minimum k such that string y is a k-approximate period of string x. For example, suppose that two strings $x=\operatorname{abcdabcabb}$ and $y=\mathrm{abc}$ are given. Since x may be partitioned into $x=p_{1} \cdot p_{2} \cdot p_{3}=\mathrm{abcd} \cdot \mathrm{abc} \cdot \mathrm{abb}$ and the edit distances between string $y=a b c$ and each substring abcd, abc, and abb equal to 1,0 , and 1 , respectively, y is a 1 -approximate period of x. Hence, the minimum k is one.

Input

Your program is to read from standard input. The input consists of T test cases. The number of test cases T is given in the first line of the input. For each test case, a string y is given in the first line and the string x is given in the next line. The length of string y is at least 1 and at most 50 , the length of string x is at least 1 and at most 5000, and the alphabet Σ is the set of lowercase English characters.

Output

Your program is to write to standard output. Print exactly one line for each test case. Print the minimum integer value k such that string y is a k-approximate period of string x.

Sample Input

3
abc
abcdabcabb
abab
abababababab
xyz
abcdefghikjlmn

Sample Output

1
0
3

