There are several colored cubes. All of them are of the same size but they may be colored differently. face of these cubes has a single color. Colors of distinct faces of a cube may or may not be the Two cubes are said to be identically colored if some suitable rotations of one of the cubes give dentical looks to both of the cubes. For example, two cubes shown in Figure 2 are identically colored.
set of cubes is said to be identically colored if every pair of them are identically colored. A cube and its mirror image are not necessarily identically colored. For example, two cubes shown in Figure 3 are not identically colored.

You can make a given set of cubes identically colored by repainting some of the faces, whatever Oors the faces may have. In Figure 4, repainting four faces makes the three cubes identically colored Your task is to write a program to cal
for a given set of cubes to become identically colored.

The input is a sequence of datasets. A dataset consists of a header and a body appearing in this order. A header is a line containing one positive integer n and the body following it consists of n lines. You can assume that $1 \leq n \leq 4$. Each line in a body contains six color names separated by a space. A
color name consists of a word or words connected with a hyphen (-). A word consists of one or more lowercase letters. You can assume that a color name is at most 24 -characters long including hyphens. A dataset corresponds to a set of colored cubes. The integer n corresponds to the number of cubes. Each line of the body corresponds to a cube and describes the colors of its faces. Color names in a line
color $_{1}$ color $_{2}$ color $_{3}$ color $_{4}$ color $_{5}$ color $_{6}$
corresponds to a cube colored as shown in Figure 6 .
The end of the input is indicated by a line cont
orresponds to a cube colored as shown in Figure 6 .
The end of the input is indicated by a line containing a single zero. It is not a dataset nor a part
f a dataset.
magenta

Figure 2: Identically colored cubes

Figure 3: cubes that are not identically colored

Figure 4: An example of recoloring

Output

erch dataset, output a line containing the minimum mer faces that need to be repainted to make the set of cub es identically colored.

Sample Input

3
scarlet green blue yellow magenta cyan blue pink green magenta cyan lemon
purple red blue yellow cyan green ${ }_{r}^{2}$ red green blue yellow magenta cyan cyan green blue yellow magenta red
red green gray gray magenta cyan
cyan green gray gray magenta red red green blue yellow magenta cyan ${ }_{r}^{3}$ red green blue yellow magenta cyan cyan green blue yellow magenta red magenta red blue yellow cyan green
blue green green green green blue
green blue blue green green green green blue blue green green green
green green green green green sea-green
${ }_{3}^{\text {green green green green green }}$
red red yellow yellow red yello red red red red red red
violet violet salmon salmon salmon salmon
violet violet salmon salmon salmon salmon
violet salmon salmon salmon salmon violet
violet violet salmon salmon violet violet
violet violet violet violet salmon salmon
red green blue yellow magenta cyan
magenta pink red scarlet vermilion wine-red
aquamarine blue cyan indigo sky-blue turquoise-blue blond cream chrome-yellow lemon olive yellow chrome-green emerald-green green olive vilidian sky-blue

Sample Output

