In the year 2 xxx , an expedition team landing on a planet found strange objects made by an ancient species living on that planet. They are transparent boxes containing opaque solid spheres (Figure 12). There are also many lithographs which seem to contain positions and radiuses of spheres.

Figure 12: A strange object
Initially their objective was unknown, but Professor Zambendorf found the cross section formed by a horizontal plane plays an important role. For example, the cross section of an object changes as in Figure 13 by sliding the plane from bottom to top.

Figure 13: Cross sections at different positions
He eventually found that some information is expressed by the transition of the number of connected figures in the cross section, where each connected figure is a union of discs intersecting or touching each other, and each disc is a cross section of the corresponding solid sphere. For instance, in Figure 13, whose geometry is described in the first sample dataset later, the number of connected figures changes as $0,1,2,1,2,3,2,1$, and 0 , at $z=0.0000,162.0000,167.0000,173.0004,185.0000,191.9996,198.0000$, 203.0000 , and 205.0000 , respectively. By assigning 1 for increment and 0 for decrement, the transitions of this sequence can be expressed by an 8 -bit binary number 11011000 .

For helping further analysis, write a program to determine the transitions when sliding the horizontal plane from bottom $(z=0)$ to top $(z=36000)$

Input
The input consists of a series of datasets. Each dataset begins with a line containing a positive integer, which indicates the number of spheres N in the dataset. It is followed by N lines describing the centers and radiuses of the spheres. Each of the N lines has four positive integers X_{i}, Y_{i}, Z_{i}, and R_{i} $(i=1, \ldots, N)$ describing the center and the radius of the i-th sphere, respectively

You may assume $1 \leq N \leq 100,1 \leq R_{i} \leq 2000,0<X_{i}-R_{i}<X_{i}+R_{i}<4000,0<Y_{i}-R_{i}<$ $Y_{i}+R_{i}<16000$, and $0<Z_{i}-R_{i}<Z_{i}+R_{i}<36000$. Each solid sphere is defined as the set of all points (x, y, z) satisfying $\left(x-X_{i}\right)^{2}+\left(y-Y_{i}\right)^{2}+\left(z-Z_{i}\right)^{2} \leq R_{i}^{2}$.

A sphere may contain other spheres. No two spheres are mutually tangent. Every $Z_{i} \pm R_{i}$ and minimum/maximum z coordinates of a circle formed by the intersection of any two spheres differ from each other by at least 0.01

The end of the input is indicated by a line with one zero.

Output

For each dataset, your program should output two lines. The first line should contain an integer M indicating the number of transitions. The second line should contain an M-bit binary number that expresses the transitions of the number of connected figures as specified above.

Sample Input

3
95
952018018
$\begin{array}{llll}125 & 20 & 185 & 18\end{array}$
$40 \quad 2719510$
1
5554 2

5554
5553 2

5554
575
16
2338346529034710 15711438925019842 17068015113241155 1899435933815888 216010364205111264 20488835237061906 25981304123679618 16131111280031125 1777475425986929 2707994511458617 1153103584305755 2462845021838934 182211539100251639 14731193912924638 1388851918653834 2239738432729862 0

Sample Output
8
11011000
2
10
2
10
2
10
1011100100110101101000101100

