Let $x_{1}, x_{2}, \ldots, x_{m}$ be real numbers satisfying the following conditions:
a) $\frac{1}{\sqrt{a}} \leq x_{i} \leq \sqrt{5}$;
b) $x_{1}+x_{2}+\ldots+x_{m}=b * \sqrt{a}$ for some integers a and $b(a>0)$.

Determine the maximum value of $x_{1}^{p}+x_{2}^{p}+\ldots+x_{m}^{p}$ for some even positive integer p.

Input

Each input line contains four integers: $m, p, a, b(m \leq 2000, p \leq 12, p$ is even). Input is correct, i.e. for each input numbers there exists $x_{1}, x_{2}, \ldots, x_{m}$ satisfying the given conditions.

Output

For each input line print one number - the maximum value of expression, given above. The answer must be rounded to the nearest integer.

Sample Input

$1997123-318$
$1024-1$

Sample Output

189548
6

