
1380 A Scheduling Problem

There is a set of jobs, say x1, x2, . . . , xn, to be scheduled. Each job needs one day to complete. Your
task is to schedule the jobs so that they can be finished in a minimum number of days. There are two
types of constraints: Conflict constraints and Precedence constraints.

Conflict constraints: Some pairs of jobs cannot be done on the same day. (Maybe job xi and job
xj need to use the same machine. So they must be done in different dates).

Precedence constraints: For some pairs of jobs, one needs to be completed before the other can
start. For example, maybe job xi cannot be started before job xj is completed.

The scheduling needs to satisfy all the constraints.

To record the constraints, we build a graph G whose vertices are the jobs: x1, x2, . . . , xn. Connect
xi and xj by an undirected edge if xi and xj cannot be done on the same day. Connect xi and xj by a
directed edge from xi to xj if xi needs to be completed before xj starts.

If the graph is complicated, the scheduling problem is very hard. Now we assume that for our
problems, the constraints are not very complicated: The graph G we need to consider are always trees
(after omitting the directions of the edges). Your task is to find out the number of days needed in an
optimal scheduling for such inputs. You can use the following result:

If G is a tree, then the number of days needed is either k or k+1, where k is the maximum
number of vertices contained in a directed path of G, i.e., a path P = (x1, x2, . . . , xk), where
for each i = 1, 2, . . . , k − 1, there is a directed edge from xi to xi+1.

Figure 1

Figure 1 on the right is such an example. There are six jobs: 1, 2, 3, 4, 5, 6.
From this figure, we know that job 1 and job 2 must be done in different dates.
Job 1 needs to be done before job 3, job 3 before job 5, job 2 before job 4 and job
4 before job 6. It is easy to verify that the minimum days to finish all the jobs is 4
days. In this example, the maximum number k of vertices contained in a directed
path is 3.

Input

The input consists of a number of trees (whose edges may be directed or undirected), say T1, T2, . . . , Tm,
where m ≤ 20. Each tree has at most 200 vertices. We represent each tree as a rooted tree (just for
convenience of presentation, the root is an arbitrarily chosen vertex). Information of each of the trees
are contained in a number of lines. Each line starts with a vertex (which is a positive integer) followed
by all its sons (which are also positive integers), then followed by a 0. Note that 0 is not a vertex, and
it indicates the end of that line. Now some of the edges are directed. The direction of an edge can be
from father to son, and can also be from son to father. If the edge is from father to son, then we put a
letter ‘d’ after that son (meaning that it is a downward edge). If the edge is from son to father, then
we put a letter ‘u’ after that son (meaning that it is an upward edge). If the edge is undirected then
we do not put any letter after the son.

The first case of the sample input below is the example in Figure 1.

Consecutive vertices (numbers or numbers with a letter after it) in a line are separated by a single
space. A line containing a single ‘0’ means the end of that tree. The next tree starts in the next line.
Two consecutive lines of single ‘0’ means the end of the input.



Universidad de Valladolid OJ: 1380 – A Scheduling Problem 2/2

Output

The output contains one line for each test case. Each line contains a number, which is the minimum
number of days to finish all the jobs in that test case.

Sample Input

1 2 3d 0

2 4d 0

3 5d 0

4 6d 0

0

1 2d 3u 4 0

0

1 2d 3 0

2 4d 5d 10 0

3 6d 7d 11 0

6 8d 9 12 0

0

1 2 3 4 0

2 5d 0

3 6d 0

4 7d 0

5 8d 0

6 9d 0

7 10d 0

0

0

Sample Output

4

3

4

3


