
1320 Bundling

Outel, a famous semiconductor company, released recently a new model of microprocessor called Pla-
tinium. Like many modern processors, Platinium can execute many instructions in one clock step
providing that there are no dependencies between them (instruction I2 is dependent on instruction I1 if
for example I2 reads a register that I1 writes to). Some processors are so clever that they calculate on
they which instructions can be safely executed in parallel. Platinium however expects this information
to be explicitly specified. A special marker, called simply a stop, inserted between two instructions
indicatesthat some instructions after the stop are possibly dependent on some instructions before the
stop. In other words instructions between two successive stops can be executed in parallel and there
should not be dependencies between them.

Another interesting feature of Platinium is that a sequence of instructions must be split into groups
of one, two or three successive instructions. Each group has to be packed into a container called a
bundle. Each bundle has 3 slots and a single instruction can be put into each slot, however some
slots may stay empty. Each instruction is categorized into one of 10 instruction types denoted by
consecutive capital letters from A to J (instructions of the same type have similar functionality, for
example type A groups integer arithmetic instructions and type F groups floating-point instructions).
Only instructions of certain types are allowed to be packed into one bundle. A template specifies one
permissible combination of instruction types within a bundle. A template can also specify a position of
a stop in the middle of a bundle (there is at most one such stop allowed). In addition, stops are allowed
between any two adjoining bundles. A set of templates is called a bundling profile. When packing
instructions into bundles, one has to use templates from bundling profile only.

Although Platinium is equipped with an instruction cache it was found that for maximal performance
it is most crucial to pack instructions as densely as possible. Second important thing is to use a small
number of stops.

Your task is to write a program for bundling Platinium instructions. For the sake of simplicity we
assume that the instructions cannot be reordered.

Task

Write a program that:

• reads a bundling prole and a sequence of instructions,

• computes the minimal number of bundles into which the sequence can be packed without breaking
the dependencies and the minimal number of all stops that are required for the minimal number
of bundles,

• writes the result.

Input

Input consists of several test case, each separated by a blank line. The first line of the file indicates the
number of test cases, and it’s followed by a blank line.

The first line of each dataset contains two integers t and n separated by a single space. Integer t
(1 ≤ t ≤ 1500) is the number of templates in the bundling profile. Integer n (1 ≤ n ≤ 100000) is the
number of instructions to be bundled.

Each of the next t lines specifies one template and contains 3 capital letters t1, t2, t3 with no spaces
in between followed by a space and an integer p. Letter ti (A ≤ ti ≤ J) is an instruction type allowed in



Universidad de Valladolid OJ: 1320 – Bundling 2/2

the i-th slot. Integer p (0 ≤ p ≤ 2) is the index of the slot after which the stop is positioned (0 means
no stop within the bundle).

Each of the next n lines specifies one instruction. The i-th line of these n lines contains one capital
letter ci and an integer di, separated by a single space. Letter ci (A ≤ ci ≤ J) is the type of the i-th
instruction. Integer di (0 ≤ di < i) is the index of the last instruction (among the previous ones)
that the i-th instruction is dependent on (0 means that the instruction is not dependent on any former
instruction).

You can assume that for each instruction type c appearing in the instruction sequence there is at
least one template containing c.

Output

The first and only line of the output contains two integers b and s separated by a single space. Integer
b is the minimal number of bundles in a valid packing. Integer s is the minimal number of all stops
that are required for the minimal number of bundles.

Print a blank line between test cases.

Sample Input

1

4 9

ABB 0

BAD 1

AAB 0

ABB 2

B 0

B 1

A 1

A 1

B 4

D 0

A 0

B 3

B 0

Sample Output

4 3


