A rooted tree with N nodes is given. Nodes are labeled 1 to $N, 1$ being the root of the tree. Each of the leaves of this tree has a value assigned to it, which is zero at the beginning. The value for each internal node U is calculated as the sum of the values of all the nodes in the sub-tree rooted at U. An internal node is a node, which has at least one child node.

You will be given two kinds of operations:
Type 1: given U, find the value of node U.
Type 2: given U and X, increase the value of the leaf U with X.

Input

First line starts with $T(0<T \leq 10)$, number of test cases. Each of the case starts with $N(0<N \leq$ 10^{5}), number of nodes in the tree. Next there will be $N-1$ lines each containing two integers U and V, indicating an edge between U and V. Next there will be $Q\left(0<Q \leq 10^{5}\right)$, number of operations. Next Q line will contain firstly TP (' 1 ' or ' 2 '), the type of the operation. Then based on the operation type, there will be one or two integers, U or U and $X\left(1 \leq U \leq N,|X| \leq 10^{9}\right)$. In case of $T P=2, U$ will always be a leaf node.

Output

For each case, print case number. Then for each operation of type 1, print the answer in a separate line. As value of the nodes can get huge, print the answer modulo $1,000,000,007$. See sample I/O for more clarification.

Sample Input

1
4
12
13
34
6
221
11
13
243
11
13

Sample Output

Case 1:

1

