
Suppose we want to search arithmetic expressions for sub-expressions of certain shape. We are consid-
ering only fully parenthesized expressions with binary operators, numerical constants, and variables, as
defined in the following BNF-like notation:

⟨expr⟩ ::= ⟨var⟩ | ⟨num⟩ | (⟨expr⟩⟨binop⟩⟨expr⟩)
⟨var⟩ ::= a | b | · · · | z

⟨num⟩ ::= ⟨digit⟩ | ⟨digit⟩⟨num⟩
⟨digit⟩ ::= 0 | 1 | · · · | 9
⟨binop⟩ ::= + | - | * | /

For example, consider the arithmetic expressions α and β defined as follows:

α : (x+ (3 ∗ z))
β : ((x+ (3 ∗ z))− ((5− (2− y))/y)).

The syntax tree associated to each one of these arithmetic expressions is shown below:

+

x ∗

3 z

-

+

x ∗

3 z

/

-

5 -

2 y

y

α β

We want to report all nodes v in β such that the sub-tree rooted at v is structurally identical to
α, ignoring all labels in the nodes. In this case, there are 2 such nodes because: (i) expression α is a
sub-expression of β and (ii) sub-expression (5 − (2 − y)) of β has the same tree structure as α. The
corresponding sub-trees have been shaded in the syntax tree of β depicted above.

Your task is to write an efficient computer program that, given inputs α and β, computes the
number of nodes v in β such that the sub-tree rooted at v is structurally identical to α.

Input

The input consists of several test cases. Each test case consists of two lines: the first line describes
the expression α and the second one the expression β. You can assume that 1 ≤ |α| ≤ 400000 and
1 ≤ |β| ≤ 400000, and that these expressions do not contain any blanks.

Output

For each test case, output the number of nodes v in β such that the sub-tree rooted at v is structurally
identical to α.

Sample Input

1978

((x+0)+z)

(x+(3*z))

((x+(3*z))-((5-(2-y))/y))

Sample Output

3

2

