
There is a strongly-connected graph (i.e. you can reach any node from any other node) with n nodes
and m edges. I will choose some of the edges to make another strongly connected graph. Your task
is to guess that graph. Too difficult, right? Don’t worry, you only need to guess k edges. If all the
edges exist in my graph, you win. I promise that from all possible graphs, the answer will be chosen
uniformly. The original graph will not have self-loops or duplicated edges.

You already have a guess, but you are a bit unsure. Why not write a program to calculate the
probability you win? For example, if n = 4, m = 5, the original graph has 5 edges: 1 → 2, 2 → 3, 3 →
4, 4 → 1, 1 → 3, there are only two possible answers:

If k = 2, the best way is to guess edge 1 → 2 and 2 → 3 (or 1 → 2 and 3 → 4 etc.) which will
guarantee a win. But if you would like to risk by guessing edges 1 → 3 and 2 → 3, the probability you
win is 0.5.

Input

There will be at most 10 test cases. Each case begins with two integers n, m (3 ≤ n ≤ 15, 2 ≤ m ≤ 50).
Each of the following m lines contains two different integers u, v (1 ≤ u, v ≤ n), that means u → v is
in the original graph. Edges are numbered 1 to m in the same order they appear in the input. The last
line begins with an integer k (1 ≤ k ≤ m) and k different integers, the edges you guess.

Output

For each test case, print the case number and the probability you win. Absolute error of 10−4 is allowed.

Sample Input

4 5

1 2

2 3

3 4

4 1

1 3

2 1 2

4 5

1 2

2 3

3 4

4 1

1 3

2 5 2

Sample Output

Case 1: 1.0000

Case 2: 0.5000


