Given two positive integers n, m, find out $n!/ m$!, where $n!=1 * 2 * 3 * \ldots * n(n \geq 1)$.
For example, if $n=6, m=3,6!/ 3!=720 / 6=120$.
Easy, right? Now let's do the reverse: given $k=n!/ m!$, find out the pair $(n, m)(n>m \geq 1)$.
If there is more than one solution, n should be as small as possible. For example, if $k=120$, the answer should be $n=5$ and $m=1$, not $n=6$ and $m=3$, because $5!/ 1!=6!/ 3!=120$, and $5<6$.

Input

There will be at most 100 test cases. Each test case contains one integer $k\left(1 \leq k \leq 10^{9}\right)$.

Output

For each test case, print two integers n and m. If there is no solution, print 'Impossible'. If there is more than one solution, n should be as small as possible.

Sample Input

Sample Output

Case 1: 51
Case 2: Impossible
Case 3: 74

