The Research Project for Competitions (RPC) rises again with a new mathematical task. This task is related with simple geometrical concepts, specifically with points and lines.

A point is a precise location or place on a plane, usually represented by a dot. It is important to understand that a point is not a thing, but a place. For instance we indicate the position of a point by placing a dot with a pencil. This dot may have a diameter of, say, 0.2 mm , but a point has no size. No matter how far you zoomed in, it would still have no width. Since a point is a place, not a thing, it has no dimensions. If a set of points all lie in a straight line, they are called "collinear". If a set of points all lie on the same plane, they are called 'coplanar'. For this problem we will use coplanar points in 2D plane; for instance, points will be located using coordinates X and Y.

Then a line is a geometrical object that is straight, infinitely long and infinitely thin. It goes off in both directions forever, and is perfectly straight. A line, strictly speaking, has no ends. It has zero width. For instance, if you draw a line with a pencil, examination with a microscope would show that the pencil mark has a measurable width. The pencil line is just a way to illustrate the idea on paper. In geometry however, a line has no width. If a set of points are lined up in such a way that a line can be drawn through all of them, the points are said to be collinear.

For this problem there will be a cloud of points in the 2 D plane and you must find the minimum amount of lines that must be drawn in order to cover all the points. Also you must take into account an important restriction: the lines can only be drawn parallel to the coordinate axis.

Input

A integer number $T \leq 150$ representing the number of cases and for each one: first a line with one integer $1 \leq N \leq 50000$, the number of points. Then follow N lines with the coordinates of the points, not necessarily distinct. For each coordinate, two space-separated integer numbers will be given, the X and Y coordinate value respectively $(1 \leq X, Y \leq 50000)$.

Output

For each case you must print an integer number with an end of line: the minimum amount of lines parallel to coordinate axis that must be drawn in order to cover all the given points.

Sample Input

Sample Output

