Toby was behaving badly at little dog school and his teacher grounded him by asking him to solve a hard problem. Toby is given a number N, let's consider a set S of all binary strings of N bits. Let's also consider any subset P_i of S, let $XOR(P_i)$ be the XOR of all the elements of P_i . The XOR of the empty set is a binary string of N zeros.

As Toby is a very smart dog, and Toby's teacher wants Toby to spend a very long time working on the problem, he asks:

How many different subsets P_i of S exist such than $XOR(P_i)$ has exactly K ones?

Recall that the empty set and S itself are valid subsets of S.

Input

The input consist of several test cases. Each test case consists of a line containing the numbers N and K. The end of the test cases is given by the end of file (EOF).

• $1 \le K \le N \le 10^6$

Output

For each test case print the requested answer modulo $p = 10^9 + 7$.

Explication:

For the first test case the subsets of the strings of 2 bits with an XOR with zero ones is: $\{\}$, $\{00\}$, $\{01, 10, 11\}$ and $\{00, 01, 10, 11\}$

For the second test case the subsets of the strings of 1 bit with an XOR with one is: {1}, {0, 1}

Sample Input

2 0

1 1

Sample Output

4

2