Toby was behaving badly at little dog school and his teacher grounded him by asking him to solve a hard problem. Toby is given a number N, let's consider a set S of all binary strings of N bits. Let's also consider any subset P_{i} of S, let $\operatorname{XOR}\left(P_{i}\right)$ be the XOR of all the elements of P_{i}. The XOR of the empty set is a binary string of N zeros.

As Toby is a very smart dog, and Toby's teacher wants Toby to spend a very long time working on the problem, he asks:

How many different subsets P_{i} of S exist such than $\operatorname{XOR}\left(P_{i}\right)$ has exactly K ones?
Recall that the empty set and S itself are valid subsets of S.

Input

The input consist of several test cases. Each test case consists of a line containing the numbers N and K. The end of the test cases is given by the end of file (EOF).

- $1 \leq K \leq N \leq 10^{6}$

Output

For each test case print the requested answer modulo $p=10^{9}+7$.

Explication:

For the first test case the subsets of the strings of 2 bits with an XOR with zero ones is: $\},\{00\}$, $\{01,10,11\}$ and $\{00,01,10,11\}$

For the second test case the subsets of the strings of 1 bit with an XOR with one is: $\{1\},\{0,1\}$

Sample Input

20
11

Sample Output

